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Abstract. Application of a diagnostic system to a helicopter gearbox is presented. The diagnostic system is a
nonparametric pattern classifier that uses a multi-valued influence matriz (MVIM) as its diagnostic model and

benefits from a fast learning algorithm that enables it to estimate its diagnostic model from a small number
of measurement-fault data. To test this diagnostic system, vibration measurements were collected from a
helicopter gearbox test stand during accelerated fatigue tests and at various fault instances. The diagnostic
results indicate that the MVIM system can accurately detect and diagnose various gearbox faults so tong as
they are induced in training.

1. INTRODUCTION

Helicopter drive trains are signifcant contributors to both

maintenance cost and flight safety !neidents. Drive trains
comprise almost 30% of maintenance costs and 16_ of me-
chanically related malfunctions that often result in the loss

of aircraft (Chin, 1993). As such, it is crucial that faults
be diagnosed in-flight so as to prevent loss of lives.

Fault diagnosis of helicopter power trains is based primar-
ily on vibration monitoring. As such, considerable effort
has been directed toward the identification of features of

vibration that are affected by specific faults (e.g., Pratt,
1986), and the development of signal processing techniques
that can quantify such features. The main problem with
this approach, however, is that due to the complexity of
helicopter gearboxes and the interaction between their var-
ious components, the individual vibration features do not

provide a reliable basis for diagnosis.

As an alternative to singh-feature based diagnosis, fault
diagnosis based on several features can be performed using

pattern classification (Pan, 1981). Among the various pat-

tera classifiers used for diagnosis, artifdal neural nets are

the most notable due to their nonparametric nature (inde-

pendence of the probabilistic structure of the system) and

their ability to generate complex decision regions. How-
ever, neural nets generally require extensive training to

develop the decision regions (diagnostic model). In cases

such as helicopter power trains, where adequate data may

not be available for training, artificial neural nets may mis-

diagnose the fault.

In this paper we demonstrate the application of a diagn_

tie method that can establish the fault signatures based on
a small number of measurement-fault data. This method

utilizes a multi-nalued influence matriz (MVIM) as its di-
agnostic model which provides indices for dingnosability of

the system and variability of the fault signatures (Danai
and Chin, 1991). These indices are used as feedback to

improve fault signatures through adaptation (Chin and

Danai. 1993).

2. THE MVIM METHOD

Measurements are processed in the MVI'M method as L1-
lustrated in Fig. 1. They are usually filtered first to ob-
tain a vector of processed measurements P, then they are

converted to binary numbers through a flagging operation

(i.e., abnormal measurements characterized by '1' and nor-

mai ones by '0'), and finally they are analyzed through

the diagnostic modal. In the MV'IM method, flagging is

performed by a Flagging Unit that is tuned according to
measures of diagnosability and fault signature variability

obtained from MVIM so as to improve the fault signa-

tures. The MVIM method is explained in detail in (Danai
and Chin, 1991) and (Chin and Danai, 1992). We will only
discuss the overall concept here for completeness.

Raw E_mated
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Fig. 1: Processing
method

of measurements in the MVIM

2.1. FaultSignature Representation

Fault signatures in the M'V'IM method are represented by
the n unh-length columns Vj E g"' of a multi-valued in-

fluence matrix (MVIM) A:

,_= [_,,.., vj, .., v_ ] (1)

where m denotes the number of measurements, and n rep-

resents the number of faults. Based upon this influence

matrix, the faults can be ranked according to their pos-

sibility of occurrence by the closeness of their influence

vectors Vj to the vector of flagged measurements Y (see

Fig. 2). In the MVIM method, the vector of diagnostic
certain_v measures, X, which ranks the faults according to



their pouibility of occurrence is defined as

_t = {_ .... _ .... _,)T__ _{al .... _J, .., o_}T (2)

where the _j represent the individual diagnostic certain_y

me_re_, and the _j denote the individual angles hetween
the influence vectors Y_ and the t_agged measurement vec-
tor Y (see Fig. 2).

v_

F'_g. 2: Schematic of diagnostic reasoning in the MVIM
method, illustrated in three dimensional space

2.2.

The h3_fluence vectors in Eq. (1) are not known a-priori and
need to be estimated. In the MVIM method, the error in

dia_is is used as the basis to estimate/update the in.
_luence vectors. For this purpose, the fault signatures are
updated recursively after the occurrence of each fault to

minimize the sum of the squared diagnostic error associ-
ated with that fault (Danai and Chin, 1991).

2.3. Fault Signature Evaluation

One of the unique features of the MVIM method is its

ability to evaluate quantitatively the _queness and v_-
abi]ity of fault signatures, so that these quantitative mea-
sures can be used to improve the flagging operation. In
the bfVI1V[ method, the uniqueness of fault signatures is

represented by the closeness of pairs of influence vectors,
and the index of diagnosability is defined to characterize

the closest pair of fault slgnatures.

In the MVIM method, the variability of fault signatures

is defined by their variance. For this purpose, the vari-
mace matrix of ._ is estimated to provide a measure of the
variations of individual components of A. Since in the

MVIM method the components of A are adjusted recur-

sively,the variancematrix can be readilyestimatedduring

training(Chin and Danai, 1993).The indexoffaultsigna-

turevariabilityisdefinedas the largestcomponent of the

variancematrix,representingthe largestvariabilityin the

components of .g-.

2.4._agging

The influencematrix A isestimatedbased on the valuesof

the flaggedmeasurement vectorY. Thus, beforethe influ-

ence matrix is used for diagnostic reasoning, the integrity

of the flagging operation needs to be ensured. Flagging in

the MVIM method is performed by a Flagging Unit that

is tuned to improve the diagnosability of the system and

reduce the variability of the fault signatures (Chin and

Danai, 1993).

The Flagging Unit uses a sample set of measurement-fault

vectors to tune its parameters iteratively. After each pass

through the training batch, the Flagging Unit counts the

totalnumber of falsealarms and undetected faults,and
estimatesthe uniquenessand variabilityof the estimated

faultsignaturesfrom the current valuesof the influence

matrix, so that it can use these measures as feedback in
the ne_t adaptation round. Adaptation stops when the
total number of false alarms and undetected faults are

minimized, and the uniqueness and confistency of fault
signatures are enhanced.

The Flagging Unit processes the residuals as follows (see
Fig. 3). The residual vector P E g_ is first passed through

Hard-Limiter I (consisting of a vector of m thresholds, hi,,

i = 1,... ,m) to produce a binary vector Z E B '_. This

vector is then multiplied sequentially by the normalized
columns of a Quantization Matrix and then thresholded
by Hard-Limiter II to produce the individual components

of the flagged measurement vector Y E bw_. Training of

the Flagging Unit comprises of adjusting the thresholds of

Hard-Lhniters I and II and the Quantization Matrix, as

explained in detail in (Chin and Dmaai, 1992).

| FmoA_m/ I

Fig. 3: Schematic of the Flagging Unit

3. EXPERIMENTAL

Vibration data were collected at NASA Lewis Research

Center. Various component failures in an OH-58A main

rotor transmission were produced during the experiments
(Lewicki et _l., 1992). The configuration of the trans-
mission which was tested in the NASA 500-hp Helicopter
Transmission Test Stand is shown in Fig. 4. The vibration

signals were recorded from eight piezoelectric accelerome-
ters (frequency range of up to 10 KHz) using an FM tape

recorder. The signals were recorded once every hour for
about one to two minutes per recording (at the tape speed

of 30 in/sec, providing a bandwidth of 20 KHz).

A totalof fivetestswere performed, where each testwas
run between nine to fifteendays for approximately four

to eighthours a day. New components were used at the

start of each test. Vc'hen a component fault was detected
during a test, it was replaced with a new one for the re-
mainder of the test. Eleven failures occurred during these

tests. The status of various faults during the five tests are

shown in Table 1 where no-fault cases are denoted by z0.

In Test #1, spiral bevel pinion failure (x4) is estimated to

have been present on days 5-9 with sun gear faihire (zl)

also occurring on day 9. No failures occurred in Test #2,

so al] tile nine days for this test are marked as normal.

In Test #3, planet bearing failure (z2) was established

to have been present on days 3-4 and 11-12, with hous-

ing crack (zz) mad mast bearing failure (z6) occurring on
day 9 and day 13, respectively. Test #4 is estimated to

have contained planet bearing failure on days 11-12 and

sun gear failure on days 14-15. In Test #5, housing crack
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Fig. 4: Configurationof the OH-58A main rotortrans-
mission

isassumed to have been presenton days 7-11,with sun

gear failure (xl) and planet gear failure (xs) occurring on
days 10-11 and day 11, respectively.

Tab]z l: Ao#ocia_on of data from eac]_ dap of _he five teJ_

with the no-fault caJe zo and vat/o= fault caJes.
Tire Jiz faults are represented as x1: sun gear

failure, z2: planet bearing failure, z3: kouJing

crack, x4: spiral bevel pinion failure, xs: planet

gear failure, and x6: mast bearing failure

Fault Status

Day Test #i Test #2 Test #3 Test #4 Test #5

1 _0 ZO ZO ZO ZO

2 X o Z o Z o X o Z o

3 x o xo _z _o _

4 X o XO Z2 XO XO

5 X 4 Z0 XO XO XO

Z4 X0 XO XO XO

7 X 4 Zo Xo x0 Z3

8 x 4 Z 0 Z 0 Z0 Z3

9 X4,_ l Z 0 Z3 X 0 X3

10 XO ZO Z3, Zl

11 z2 x2 zs, xz,xs
12 x2 z2

13 xs xo

14 x_

15 xl

4. SIGNAL PROCESSING

In order to identifythe effectof faultson the vibration

data,the vibrationsignalsobtainedfrom thefivetestswere

digitizedand processedby a commerciallyavailablesignal

analyzer (StewartHughes, 1987)with fourprocessingmod-

ules:(1) Statistical Analztai-_ (STAT), (2) Baseband Po_ver

Spe_t,-:r,,Anaz_ (BBPS), (3) ecaring AnaZp,_(BRG_4),
and (4) Signal Aversging Analztni_ (SGA V).

For analysis purposes, only one data record per day was

used for each test. The data records were taken at the

beginning of the day unless a fault was reported. When a

fault was detected, the record was taken right before the
fault incident to ensure that the data record reflected the

fault. Also, in order to reduce estimation errors, each data

record was partitioned into sixteen segments, and pazam-

eterswere estimated foreach segment and averaged over

thesesegments. The data records as wellas the param-

etersobtained from the above processingmodules were

then transferredto a personalcomputer forfurtheranaly-

sis(Chin, 1992).

5. IMPLEMENTATION AND RESULTS

The configurationof the MVIM system as appliedto fault

diagnosisof the OH-58A main rotortransmissionisillus-

trated in Fig. 5. As shown in thisfigure,two M'VIMs

are trainedfor each accelerometer. One MVIM to per-

form detection(i.e.,to determinewhether a fauh has oc-

curredor not),and a diagnosticMVIM to isolatethe fault.

The 54 parameters obtained from the signalanalyzerwere

used to trainand testthe MVIM system. The detection

MVIM containedonlytwo columns to characterizethe no-

faultand faultsignatures,whereas the diagnosticMVIM

containedseven columns, one characterizingthe no-fault

signatureand the other sixrepresentingthe signaturesof

individualfaults.Note that the two MVIMs can be per-
ceivedas filterswith differentresolutions.In order to in-

tegratethe resultsfrom the MVIMs associatedwith the

eightaccelerometers,a voting scheme was utilized.Test

Ac¢@1 Accd_ _#8

@ • • • •

@ • • • •

Yam

V

Fig. 5: Configurationof the MVIM system as appliedto
the OH-58A main rotortransmission.

#3 and #4 contained most of the failuremodes (i.e.,4

out of 6). Therefore,the parameters from thesetwo tests
were used to trainthe MVIMs. Note that not allof the

failuremodes were included intraining,so the testresults

were not expected to be perfect.For trainingthe detection

MVIMs, only the 19 parameters from the oeTAT, BBPS,
and BRGA modules were used. Previous studieson this

data show thatthese 19 parameters are adequate forde-

tection(Chin,1993). For trainingthe diagnosticMVIMs,

allof the 54 parameters were utilized.

The initialvaluesof the detectionMVIMs (19 x 2) and di-

agnosticMVIMs (54 x 7) were each set to 0 (i.e.,matrices

with allzeroentries),and the initialvaluesof the Quan-

tizationMatrices (19 x 19 fordetection)and (54 x 54 for

diagnosis)were settoidentitymatrices.The initialthresh-

old levelsforHard-Limiter I were set at the mean plusone

standard deviationof the correspondingparameter, and
for Hard-Limlter If,they were set at 0.5. The maximum

number of epochs for trainingthe detectionand diagnos-

ticMVIMs was set to 50. After each epoch, the detec-

tion/diagnosticperformance ofMVIMs withinthe training



set was tested. "£raining was stopped once perfect detee-
tion/diagnosis was achieved, to avoid overtraining (Hertz

el 6/., 1991). The number of epochs used for individual

detection MVIMs were: 8, 5, 50, 37, 50, 15, 50, and 50

for acxelerometers #1 to #8, respectively, whereas for di-

agnostic MVIMs they were: 50, 1, 2, 2, 26, 50, 50, and

50. According to the number of epochs used for individual

MVIMs, it is clear that the detection MVIMs associated

with aecelerometers #3, #5, #7, and #8 did not achieve
perfect detection within the training set. Similarly, the di-

agnostic MVIMs associated with agcelerometers #1, #6,

#7, and #8 did not achieve perfect diagnosis within the

training set.

The MVIM trained on Tests #3 and #4 were evaluated

for allof the tests.For thispurpose, the 19 parameters

from each of the eight accelerometerswere firstpassed

through the correspondingdetectionMVIM for allof the
fiveteststo rejectthe occurrenceoffaults.Once a fault

was posted by a detectionMVIM, the setof 54 parame_

tarsfrom that accelerometerwas passed through the cor-

respondingdiagnosticMVIM. At the ilnalstage,the diag-

nosticcertaintymeasures obtainedfrom the eightdiagnos-

ticMVIMs were consolidatedby the votingscheme, which

utilizedweights reflectingthe speed of convergenceof in-

dividualfaultsignaturesduring training(Chin,1993).As

such those inSuence vectorswhich converged fasterwere

assignedlargerweights and viceversa.Zero weightswere

assigned to the influencevectorswhich did not converge

during training,and unity weights to those which con-

verged within one epoch.

The diagnosticresultsobtained from the above diagnostic

_ system are shown in Table 2. The resultsindicatethat

the MVIM system was ableto produce perfectdiagnostics

for Tests #3 and #4, on which it was trained, and that it

diagnosed 88% of the faults in all of the tests. Specifically,
the resultsin Table 2 indicatethatthe M'VIM system pro-

duced two falsealarms (on day 4 of Test #1 and day 6 of

Test #5), and five misdiagnoses (on days 5-8 of Test #1

and day 11 of Test #5). In addition, this system produced

equal diagnostic certainty measures for the no-fault case

and sun gear failure on day 10 of Test #5 and could only
diagnose one of the faultson day 9 d Test #I, and on

days 10 and 11 of Test #5. However, itshould be noted
that faults x4 and zs were not included in training, so

no fault signatures were estimated for them. The correct

diagnostic rate of MV'IM, with these two faults excluded
would be over 95%, which is quite noteworthy considering

that the MVIM system was trainedon a small number of

measurement-fault data with very few repetitionsof each

fault.

6. CONCLUSION

A faultdiagnosticsystem based on the MV!M method is

appliedtoa helicoptergearbc_ forwhich onlya smallnum-
ber of measurement-fault data was available. This diag-

nostic system utilizes two levels of isolation and integrates

the results obtained from various accelerometers through

a voting scheme. The diagnostic results indicate that the

MVIM system correctly detected all of the fault incidents,

with only two false alarms posted. The results further in-
dicate thatthissystem correctlydiagnosedallof the faults

itwas trainedfor.

Table _: Estimated fault stat_ from each day of the five

tez_. Same notationa are adopted aa in Table I

Estimated Fault Status

Day Test #I Test #2 T_st #3 Test #4 Test #5

1 Z 0 Z 0 _0 _0 ZO

2 Zo z0 Zo x0 Xo

3 Xo Xo z2 Zo Xo

4 _3 zo z2 _o zo

5 _3 XO XO - _0 ZO

_3 ZO ZO XO z6

7 X 3 ZO Z 0 XO _3

8 Z3 _0 ZO ZO _3

9 zz zo _3 =0 Z3

I0 zo zo zo,zl

11 z2 z_ za, xs
12 z_ z=

13 zs zo

14 zl

15 zl
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